
DRANSPO.SE – A FLEXIBLE LIVE PROCESSING PIPELINE
Felix Engelmann

Scientific Data

DRANSPO.SE – A FLEXIBLE LIVE PROCESSING PIPELINE
Felix Engelmann

Scientific Data

Accelerating Scientific Insight Through Rapid Feedback

Scanning
Sardana, Contrast, Hula

Analysis
Event formation, Calibration, Corrections,
Fitting, Azimuthal integration, I0 normal-
isation, Tomography angle augmentation,
Sparsification, AI/ML alignment

Visualisation

Detectorsorchestration, triggers unprocessed, separate data streams

resultsscientist’s interpretation

automatic scanning decision

Source Trigger Map

Ingesters connect to different data sources, such as detectors, electrometers and en-
coders and form events according to the Trigger Map.

• STINS (2d detectors, multipart zmq PULL)
• PandABox PCAP (encoders, TCP/ascii)
•Contrast/Sardana (snapshots)
• Xspress3 (energy spectra, zmq SUB)

Which frames from which detectors belong to the same event and have to be processed
by the same worker having which tags?

all 1 {3,debug} 5 7 8 10 10 11
all 2 {4,debug} 6 7 9 10 10 11
all all debug none ∅ none none none none
all {1,2} none {5,6} none {8,9} 10 none 11

This supports detectors not producing a frame for a trigger (none) and discarding
frames (∅). Meta information is easily distributed to all workers by all. Tags allow
different sets of workers, the debug worker just exposes the last n events.
The trigger map is provided by the scanning software:
contrast: patch after _generate_positions
sardana: global hook to extract number of points

Map Reduce

Events are dispatched to the next free available worker satisfying the constraints and
tags. The fine grained load balancing allows to keep state in the worker. This enables
temporal analysis, e.g. calculate the difference of two consecutive exposures. All
required parameters need to be described.
class FluorescenceWorker:

@staticmethod
def describe_parameters ():

return [IntParameter(name="roi1 -start")]

def __init__(self , parameters=None):
self.number = 0

def process_event(self , event: EventData , parameters=None):
print(event)
parse zmq frames , fit spectra to get concentrations , extract motor position
return {"position": mot , "concentrations": ...}

Workers emit arbitrary objects as reduced results. It is important that the output of
all workers combined does not exceed a bottleneck of around 10 Gbit/s.
The results of workers are forwarded to a single reducer which has access to the full
history of the scan. It has limited capacity and needs to operate at line speed which is
fine for simple operations such as appending worker results to a list.
class FluorescenceReducer:

@staticmethod
def describe_parameters ():

return [FileParameter(name="dest_file")]

def __init__(self , parameters=None):
self.publish = {"map": {}}

def process_result(self , result: ResultData , parameters=None):
if result.payload:

self.publish["map"][result.payload["position"]] = result.payload["concentations"]

The reducer has a special attribute publish which is exposed through a REST api with
JsonPATH selections and numpy slicing.

Visualisation

The most flexible way to view results is to access the reducer data through a Jupyter
notebook.
req = requests.get("http://pipeline -reducer/api/v1/result/$")
result = pickle.loads(req.content)
pos = list(result [0]["map"].keys())
plt.scatter([x[0] for x in pos],[x[1] for x in pos])

Alternatively a custom GUI may be developed which integrates setting parameters or
selectively zooming into regions, if the whole data set is too large for the local memory.

Control System Integration

A Tango device server presents the status of a pipeline and allows to set parameters. It
shows which ingester streams are available and the load of workers, allowing to adjust
the worker scaling. Pipeline parameters support str, int, float and file.
State CLOSE
Status contrast-ingester, streams: [’contrast’]

xspress3-ingester, streams: [’xspress3’]
x3mini-ingester, streams: [’x3mini’]
Worker-VKbSqFyDIU, tags: [’generic’], last:133, evs:19, ld10: 0.06, ld: 0.09
Worker-mPfJRkLXjj, tags: [’generic’], last:133, evs:18, ld10: 0.06, ld: 0.09

completedEvents 134
totalEvents 134
mca_config /data/xrf/fit_config_removed.cfg

Architecture & Performance

Detectors

custom

wrapped(custom)

pickle in zmq

Ingesters

Workers

Reduce

PULLPULL SUB

redis

controller

PUSH PUSH PUB PUB

ROUTER ROUTER ROUTER

DEALER DEALER DEALER

PUSH PUSH PUSH

PULL

The throughput of the system is only limited by the underlying kernel and zmq library.
With jumbo frames, we successfully processed a single stream of 23GBit/s from a
16 bit cmos camera at 120 Hz. Affinity of ingesters heavily impacts performance.
The design allows arbitrary horizontal scaling for many ingesters. If a detector sup-
ports one stream per module, multiple ingesters are used to reassemble full frames for
a worker. We tested ingesting events at up to 2 kHz.

Deployment

If a kubernetes cluster is available, deployment is handled by a helm chart with values
ingesters:

orca:
connect_url: "tcp://danmax -orca -daq -zmq -egress.danmax -orca :5556"
ingester_class: "ZmqPullSingleIngester"
affinity:

namespace: danmax -orca
component: daq

pcap:
connect_url: "tcp ://172.16.214.46:8889" # panda main
ingester_class: "TcpPcapIngester"
stream: "pcap_rot"

workers: 2
science_image: "harbor.maxiv.lu.se/daq/dranspose/danmax -fluorescence:main"
worker: {class: "src.worker:FluorescenceWorker"}
reducer: {class: "src.reducer:FluorescenceReducer"}

Without kubernetes, the only dependency is a redis to which all containerised com-
ponents connect.

Development pip install dranspose

The package provides a dranspose cli to run components or develop scientific code.
• Ingesters dump stream messages to storage.
• Replay streams to custom workers and reducers.
To develop a new ingester, capture the raw packets and perform test-driven develop-
ment. To get insight into live packets, a debug worker exposes sampled full events
over a REST interface.
Documentation at https://dranspo.se/

