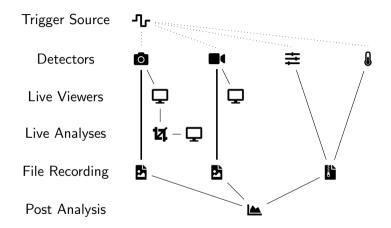
dranspose: distributed event formation with dynamic map-reduce

Felix Engelmann

felix.engelmann@maxiv.lu.se

30th November 2023

Existing Infrastructure



Limitations of Live Analysis

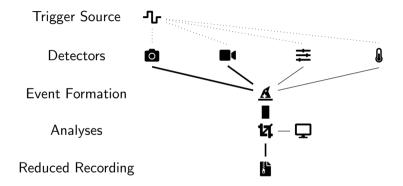
Single Data Stream

- only one detector data available
- simple tools, e.g. azint, crop, time integration
- **b** beyond limits: normalisation to I_0 , sorting by motor position

Custom Modules

- module development by SciDa
- custom deployment/integration
- custom live viewer interaction (mostly REST)

Event Formation



Frame/Worker Matrix Transformation

Frame Stream

Event Stream

Event 1	o 1	∎◀ 1	≢ 1	l 1
Event 2	02	■4 2		
Event 3	03	■4 3		& 2
Event 4	04	■4 4	≇ 2	
Event 5	05	■¶ 5		3 🌡

Stream

- matrix is sequentially filled column by column
- possibly unknown size (reactive scanning)

Bandwidth and Latency

Limitations

- TCP connection max 60 Gbit/s
- ZMQ connection measured ca. 30 Gbit/s

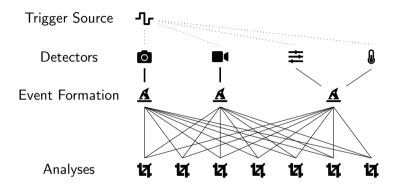
Bottleneck

Event Formation Analyses

Processing Delay

- $\blacktriangleright\,$ acquisition at $\approx\,100$ 1000 Hz
- processing at \approx 5-10 Hz

Parallelisation



Inter Event Analysis

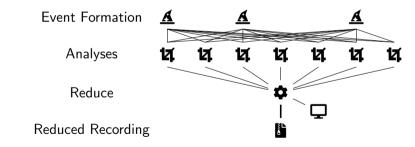
- ▶ time integration
- temporal correlations

Sequential Reduce

Operations at Acquisition Speed

▶ append to list

sum



Intense Inter Event Computation

Examples

- aligning images (correlation)
- temporal fourier transform

Stateful Workers

- load balance with constraints
- e.g. worker selected for event n will also get n + 1

Worker 1	01	I 1	≢ 1	§ 1
Worker 1	02	■ 2		
Worker 2	03	■4 3		l 2
Worker 2	04	■ ¶ 4	≢ 2	
Worker 1	o 5	■¶5		3 🌡

Trigger Map

Event Definitions

Which *frames* from which *detectors* belong to the same *event* and have to be processed by the same *worker*?

Virtual Workers

- virtual workers are dynamically assigned to real workers
- ▶ special *all* workers (stream headers), or discard frame with \emptyset
- none if stream has no frame for event

0	all	1	3	5	7	8
	all	2	4	6	7	9
ŧ	all	all	none	none	Ø	none
l	all	$\{1,2\}$	none	{5,6}	none	{8,9}

Scanning

trigger map specified by scanning software, append-only extendable

Development: Events

ease of use/development by SciDa and beamline staff

Event Structure

```
StreamName = NewType("StreamName", str)
EventNumber = NewType("EventNumber", int)
```

```
class StreamData(BaseModel):
    typ: str
    frames: list[zmq.Frame]
```

```
class EventData(BaseModel):
    event_number: EventNumber
    streams: dict[StreamName, StreamData]
```

Development: Worker

```
class FluorescenceWorker
   def __init__(self):
        self.number = 0
   def process_event(self. event: EventData.
                      parameters=None):
        print(event)
        # parse zmg frames
       # fit spectra to get concentrations
        # extract motor position
        return {"position": mot, "concentrations": ...}
```

reinstantiated for every scan (new Trigger Map)

Development: Reducer

```
class FluorescenceReducer:
    def __init__(self):
        self.publish = {"map": {}}
    def process_result(self.
                      result: ResultData.
                      parameters=None):
        print(result.event_number)
        print(result.worker)
        print(result.parameters_uuid)
        data = result.pavload
        self.publish["map"][data["position"]] = \
                data["concentrations"]
```

reinstantiated for every scan (new Trigger Map)

Development: Viewer

```
Jupyter Notebook
import requests, pickle
import matplotlib.pyplot as plt
params = \{\}
requests.post("http://<ns>-ctrl.../params", ison=params)
⋕ start scan
r = requests.get("http://<ns>-reducer.../result/pickle")
data = pickle.loads(r.content)
# data = FluorescenceReducer.publish
```

plt.imshow(data["map"])

Development: Silx based Viewer

Parameters

- set parameters
- influence slow processing

Partial Views

- keep large accumulated data set on reducer
- query specific slice of reducer.publish
- e.g. http://<ns>-reducer.../result/map/100:110,:

Development: Testing

Recording

ingesters optionally write all zmq frames to disk (sequential pickle dumps)

Replay

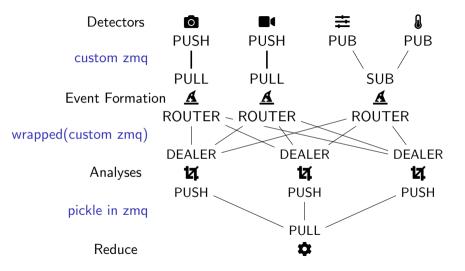
- from recorded zmq frames
- from hdf5 files

Local

run file-based ingesters, workers and reducer locally

Internals

Architecture, ZMQ



Architecture, redis

Config

- components publish config (connected peers, trigger map version, zmq url)
- timeout for liveness probe

■ updates

controller notifies of new mapping/parameters

⊇ ► ready

workers notify readyness after event processed

≥ ⇒ assign

event_number: EventNumber

assignments: dict[StreamName, list[WorkerName]]

Event Coordination

Controller

- ▶ wait for new entry in S ▶ ready
- assign worker to first unassigned virtual worker (and all)
- ▶ distribute WorkAssignment in S ▶ assign

Ingester

- filter assignment for own streams
- combine all local streams
- copy event to specified workers (ROUTER)

Worker

- filter assignment for own work
- listen to ingesters with participating streams
- assemble EventData
- call custom code
- send pickled result to reducer
- ▶ send ready message to ▶ ready

Common Modules

$\mathsf{ZMQ}\ \mathsf{Format}\ /\ \mathsf{STINS}$

unpacking of (mulit-part) zmq frames to numpy arrays

Calibration

installed as python modules

Middlewares

 $process_event \rightarrow parse \ zmq \rightarrow callibration \rightarrow azint \rightarrow normalise \rightarrow custom$

- maybe register required parameters?
- registered in Worker __init__

Tests

End-to-End

- stream fake zmq frames
- full scan test

Protocols

- Pydantic BaseModel (similar to dataclass)
- all messages defined and validated
- no dicts with random fields

Typing

type hint annotations

mypy strict

Deployment

Docker

- install custom dependencies
- end-to-end build latency multiple minutes

K8s

- HELM chart for beamline
- restart pulls new version
- different containers for different experiments

Versioning

- add git commit hash to reduced data
- add parameters to h5 file

Performance

Bandwidth

- 10 Gbit/s from b-daq-cn2 and b-daq-cn3
- ► 8 workers

horizontally scalable if each stream \leq 30 Gbit/s

Latency

► \approx 2 kHz with enough workers practically limited to \approx *n* workers \Rightarrow max worker runtime $\frac{n}{\text{acquisition rate [Hz]}}$ s

Virtual Worker Distribution

 $orall {\mathsf{st}}_0 \in \mathbb{N}, h \in {[|\mathsf{workers}|,\infty)}:$

$$|\{M_{\mathsf{ev},\mathsf{st}}:\mathsf{st}_0\leq\mathsf{ev}<(\mathsf{st}_0+h),\mathsf{st}\in\mathsf{streams}\}|>h-\epsilon$$

Outlook

File Writing

custom by developers?

Autoscaling

- observability of workers (queues)
- duty cycle of workers
- non-deterministic worker functions
- integration with k8s

Scan Integration

- publish trigger map
- append to trigger map