
dranspose: distributed event formation with dynamic map-reduce

Felix Engelmann

felix.engelmann@maxiv.lu.se

30th November 2023

1 / 25

felix.engelmann@maxiv.lu.se

Existing Infrastructure

Detectors � � gÅ

Trigger Source ×

File Recording J J B

Live Analyses ë

Post Analysis

Live Viewers ø ø

ø

2 / 25

Limitations of Live Analysis

Single Data Stream

▶ only one detector data available

▶ simple tools, e.g. azint, crop, time integration

▶ beyond limits: normalisation to I0, sorting by motor position

Custom Modules
▶ module development by SciDa

▶ custom deployment/integration

▶ custom live viewer interaction (mostly REST)

3 / 25

Event Formation

Detectors � � gÅ

Trigger Source ×

Event Formation ½

Analyses ë ø

Reduced Recording B

4 / 25

Frame/Worker Matrix Transformation

Frame Stream

� 1 2 3 4 5
Å 1 2 3 4 5
� 1 2
g 1 2 3

Event Stream

Event 1 � 1 Å 1 � 1 g 1
Event 2 � 2 Å 2
Event 3 � 3 Å 3 g 2
Event 4 � 4 Å 4 � 2
Event 5 � 5 Å 5 g 3

Stream
▶ matrix is sequentially filled column by column

▶ possibly unknown size (reactive scanning)

5 / 25

Bandwidth and Latency

Limitations
▶ TCP connection max 60 Gbit/s

▶ ZMQ connection measured ca. 30 Gbit/s

Bottleneck
Event Formation ½

Analyses ë

Processing Delay

▶ acquisition at ≈ 100 – 1000 Hz

▶ processing at ≈ 5-10 Hz

6 / 25

Parallelisation

Detectors � � gÅ

Trigger Source ×

Event Formation ½ ½ ½

Analyses ë ë ë ë ë ë ë

Inter Event Analysis

▶ time integration

▶ temporal correlations

7 / 25

Sequential Reduce

Operations at Acquisition Speed

▶ append to list

▶ sum

Event Formation ½ ½ ½

Analyses ë ë ë ë ë ë ë

Reduce Ó

ø

Reduced Recording B

8 / 25

Intense Inter Event Computation

Examples
▶ aligning images (correlation)

▶ temporal fourier transform

Stateful Workers
▶ load balance with constraints

▶ e.g. worker selected for event n will
also get n + 1

Worker 1 � 1 Å 1 � 1 g 1
Worker 1 � 2 Å 2
Worker 2 � 3 Å 3 g 2
Worker 2 � 4 Å 4 � 2
Worker 1 � 5 Å 5 g 3

9 / 25

Trigger Map

Event Definitions
Which frames from which detectors belong to the same event and have to be
processed by the same worker?

Virtual Workers
▶ virtual workers are dynamically assigned to real workers

▶ special all workers (stream headers), or discard frame with ∅
▶ none if stream has no frame for event

� all 1 3 5 7 8
Å all 2 4 6 7 9
� all all none none ∅ none
g all {1,2} none {5,6} none {8,9}

Scanning

trigger map specified by scanning software, append-only extendable
10 / 25

Development: Events

ease of use/development by SciDa and beamline staff

Event Structure

StreamName = NewType("StreamName", str)
EventNumber = NewType("EventNumber", int)

class StreamData(BaseModel):
typ: str
frames: list[zmq.Frame]

class EventData(BaseModel):
event number: EventNumber
streams: dict[StreamName , StreamData]

11 / 25

Development: Worker

class FluorescenceWorker:
def init (self):

self.number = 0

def process event(self, event: EventData ,
parameters=None):

print(event)
p a r s e zmq f r am e s
f i t s p e c t r a t o g e t c o n c e n t r a t i o n s
e x t r a c t moto r p o s i t i o n
return {"position": mot, "concentrations": ...}

reinstantiated for every scan (new Trigger Map)

12 / 25

Development: Reducer

class FluorescenceReducer:
def init (self):

self.publish = {"map": {}}

def process result(self,
result: ResultData ,
parameters=None):

print(result.event number)
print(result.worker)
print(result.parameters uuid)
data = result.payload
self.publish["map"][data["position"]] = \

data["concentrations"]

reinstantiated for every scan (new Trigger Map)

13 / 25

Development: Viewer

Jupyter Notebook

import requests , pickle
import matplotlib.pyplot as plt

params = {}
requests.post("http://<ns>−ctrl.../params", json=params)
s t a r t s c a n
r = requests.get("http://<ns>−reducer.../result/pickle")
data = pickle.loads(r.content)
da t a = F l u o r e s c e n c e R e d u c e r . p u b l i s h

plt.imshow(data["map"])

14 / 25

Development: Silx based Viewer

Parameters
▶ set parameters

▶ influence slow processing

Partial Views
▶ keep large accumulated data set on reducer

▶ query specific slice of reducer.publish

▶ e.g. http://<ns>-reducer.../result/map/100:110,:

15 / 25

http://<ns>-reducer.../result/map/100:110,:

Development: Testing

Recording

ingesters optionally write all zmq frames to disk (sequential pickle dumps)

Replay

▶ from recorded zmq frames

▶ from hdf5 files

Local
run file-based ingesters, workers and reducer locally

16 / 25

Internals

17 / 25

Architecture, ZMQ

Detectors � � gÅ

custom zmq

wrapped(custom zmq)

pickle in zmq

Event Formation ½ ½ ½

Analyses ë ë ë

Reduce Ó

PULLPULL SUB

PUSH PUSH PUB PUB

ROUTER ROUTER ROUTER

DEALER DEALER DEALER

PUSH PUSH PUSH

PULL

18 / 25

Architecture, redis

õ config

▶ components publish config (connected peers, trigger map version, zmq url)

▶ timeout for liveness probe

õ m updates

▶ controller notifies of new mapping/parameters

õ m ready

▶ workers notify readyness after event processed

õ m assign

event number: EventNumber

assignments: dict[StreamName, list[WorkerName]]

19 / 25

Event Coordination

Controller
▶ wait for new entry in õ m ready

▶ assign worker to first unassigned virtual worker (and all)

▶ distribute WorkAssignment in õ m assign

Ingester
▶ filter assignment for own streams

▶ combine all local streams

▶ copy event to specified workers
(ROUTER)

Worker
▶ filter assignment for own work

▶ listen to ingesters with participating
streams

▶ assemble EventData

▶ call custom code

▶ send pickled result to reducer

▶ send ready message to õ m ready

20 / 25

Common Modules

ZMQ Format / STINS

▶ unpacking of (mulit-part) zmq frames to numpy arrays

Calibration
▶ installed as python modules

Middlewares

process event parse zmq callibration azint normalise custom

▶ maybe register required parameters?

▶ registered in Worker init

21 / 25

Tests

End-to-End
▶ stream fake zmq frames

▶ full scan test

Protocols
▶ Pydantic BaseModel (similar to dataclass)

▶ all messages defined and validated

▶ no dicts with random fields

Typing

▶ type hint annotations

▶ mypy strict

22 / 25

Deployment

Docker
▶ install custom dependencies

▶ end-to-end build latency multiple minutes

K8s
▶ HELM chart for beamline

▶ restart pulls new version

▶ different containers for different experiments

Versioning

▶ add git commit hash to reduced data

▶ add parameters to h5 file

23 / 25

Performance

Bandwidth
▶ 10 Gbit/s from b-daq-cn2 and b-daq-cn3

▶ 8 workers

horizontally scalable if each stream ≤ 30 Gbit/s

Latency

▶ ≈ 2 kHz with enough workers

practically limited to ≈ n workers ⇒ max worker runtime n
acquisition rate [Hz]s

Virtual Worker Distribution
∀st0 ∈ N, h ∈ [|workers|,∞) :

|{Mev,st : st0 ≤ ev < (st0 + h), st ∈ streams}| > h − ϵ

24 / 25

Outlook

File Writing

▶ custom by developers?

Autoscaling

▶ observability of workers (queues)

▶ duty cycle of workers

▶ non-deterministic worker functions

▶ integration with k8s

Scan Integration

▶ publish trigger map

▶ append to trigger map

25 / 25

